skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Su, Xingsong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Janus nanoparticles (NPs) containing two chemically distinct materials in one system are of great significance for catalysis in terms of harnessing catalytic synergies that are not exist in either component. We herein present a novel synthetic method of two Janus-type MnOx-Ag and MnOx-AgI NPs for efficient photochemical water oxidation. The synthesis of Janus-type MnOx-AgI NPs is based on the oxidative nucleation and growth of Ag domains on MnO first and the subsequent iodization of Ag. A mild and non-disruptive iodization strategy is developed to yield Janus MnOx-AgI NPs, in which converting Ag to AgI domains with iodomethane (CH3I) is achieved through the partial iodization. Simultaneously, Mn2+ species in the primary MnO octahedrons are oxidized during the growth of Ag NPs, leading to the formation of amorphous p-type MnOx domains. Therefore, as-resultant Janus-type MnOx-AgI NPs combining two semiconductors into an integrated nanostructure can be used as an efficient photocatalyst for visible light-driven water oxidation. Janus MnOx-AgI NPs show an expected photocatalytic activity even in the absence of Ru(bpy)3Cl2 as an electron mediator. This intriguing synthesis may open up a new opportunity to develop asymmetric nanostructures of two semiconductors that will potentially be efficient photocatalysts for solar-driven water splitting. 
    more » « less
  2. Abstract A colloidal‐amphiphile‐templated growth is developed to synthesize mesoporous complex oxides with highly crystalline frameworks. Organosilane‐containing colloidal templates can convert into thermally stable silica that prevents the overgrowth of crystalline grains and the collapse of the mesoporosity. Using ilmenite CoTiO3as an example, the high crystallinity and the extraordinary thermal stability of its mesoporosity are demonstrated at 800 °C for 48 h under air. This synthetic approach is general and applicable to a series of complex oxides that are not reported with mesoporosity and high crystallinity, such as NiTiO3, FeTiO3, ZnTiO3, Co2TiO4, Zn2TiO4, MgTi2O5, and FeTi2O5. Those novel materials make it possible to build up correlations between mesoscale porosity and surface‐sensitive physicochemical properties, e.g., electromagnetic response. For mesoporous CoTiO3, there is a 3 K increase of its antiferromagnetic ordering temperature, compared with that of nonporous one. This finding provides a general guideline to design mesoporous complex oxides that allow exploring their unique properties different from bulk materials. 
    more » « less